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a b s t r a c t 

Nowadays, human-based video analysis becomes increasingly exhausting due to the ubiquitous use of 

surveillance cameras and explosive growth of video data. This paper proposes a novel approach to de- 

tect and localize video anomalies automatically. For video feature extraction, video volumes are jointly 

represented by two novel local motion based video descriptors, SL-HOF and ULGP-OF. SL-HOF descriptor 

captures the spatial distribution information of 3D local regions’ motion in the spatio-temporal cuboid 

extracted from video, which can implicitly reflect the structural information of foreground and depict 

foreground motion more precisely than the normal HOF descriptor. To locate the video foreground more 

accurately, we propose a new Robust PCA based foreground localization scheme. ULGP-OF descriptor, 

which seamlessly combines the classic 2D texture descriptor LGP and optical flow, is proposed to de- 

scribe the motion statistics of local region texture in the areas located by the foreground localization 

scheme. Both SL-HOF and ULGP-OF are shown to be more discriminative than existing video descrip- 

tors in anomaly detection. To model features of normal video events, we introduce the newly-emergent 

one-class Extreme Learning Machine (OCELM) as the data description algorithm. With a tremendous re- 

duction in training time, OCELM can yield comparable or better performance than existing algorithms 

like the classic OCSVM, which makes our approach easier for model updating and more applicable to fast 

learning from the rapidly generated surveillance data. The proposed approach is tested on UCSD ped1, 

ped2 and UMN datasets, and experimental results show that our approach can achieve state-of-the-art 

results in both video anomaly detection and localization task. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Surveillance cameras are gradually penetrating almost every

orner of contemporary society. They play a center role in numer-

us realms such as municipal administration, traffic management

nd public security. The surging number of surveillance cameras

aturally gives rise to a huge amount of surveillance video data,

hich are extremely tedious and time-consuming for manual anal-

sis. Consequently, automatic video anomaly detection and local-

zation are gaining increasing interest from both academia and in-

ustry. 

Unlike classic object detection tasks like face detection or

edestrian detection, “anomaly” is a more abstract concept and

ts definition is not straightforward. Early research tends to con-

entrate on specific tasks in video anomaly detection. For exam-
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le, Chung et al. [1] propose a behavior understanding system to

etect abnormal behaviors of patients in a nursing center, while

oroughi et al. [2] adopt Support Vector Machine (SVM) for hu-

an fall detection. However, methods designed specifically for a

ertain task will obviously meet problems when dealing with un-

nown anomalies. Therefore, recent works in anomaly detection

end to consider video anomaly detection as an “outlier detection”

roblem [3] , namely, only normal video events are modeled in the

raining phase and those events that divert significantly from nor-

al events are viewed as anomalies. “Modeling normalcy” lays the

oundation of most works in recent video anomaly detection re-

earch, including this paper. In addition to the anomaly definition,

nother key factor that has a significant impact on anomaly de-

ection performance is whether the video scene is crowded. In

ncrowded scenes where classic object tracking can be well per-

ormed, it is easy to extract high-level features with rich seman-

ics, like object trajectory, for anomaly detection. A number of

orks like [4–7] addressed such scenes soundly by object track-

ng and trajectory analysis. However, such methods perform poorly
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Fig. 1. Examples of crowded scenes from UCSD datasets. 

Fig. 2. Flow chart of our approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v  

s  

S  
in crowded scenes with severe occlusion (See Fig. 1 ). Thus, robust

low-level feature based approaches are proposed to address video

anomaly detection in crowded scenes, which will be reviewed in

Section 2 . 

In this paper, we aim to address anomaly detection and local-

ization in videos with crowded or uncrowded scenes. Our approach

can be roughly divided into two phases: Joint video representation

and normalcy modeling. A flow chart of the proposed approach

is shown in Fig. 2 : First of all, training video volumes are jointly

represented by two novel low-level descriptors, Spatially Localized

Histogram of Optical Flow (SL-HOF) and Uniform Local Gradient

Pattern based Optical Flow (ULGP-OF), which are both based on

local motion description in videos. To be more specific, after parti-

tioning each spatio-temporal cuboid from videos spatially into nu-

merous 3D local regions, SL-HOF is used to describe the motion of

those local 3D regions and summarize their motion’s spatial dis-

tribution. With the proposed Robust PCA based foreground local-

ization scheme, ULGP-OF, which is a combination of the classic 2D

texture descriptor Local Gradient Pattern (LGP) [8] and optical flow,

is used to describe the motion of local region texture in video fore-

ground. By virtue of SL-HOF and ULGP-OF, both motion statistics of

local spatial region and local foreground texture are embodied by

the proposed joint video representation. Subsequently, SL-HOF and

ULGP-OF features are modeled respectively by OCELMs, which is an

emerging data description algorithm that requires minimal train-

ing time to achieve a comparable or better data description per-

formance. Finally, outlying video cuboids or patches are detected

by the obtained OCELMs as video anomalies. Our contributions are

three-fold: 

• We propose a new SL-HOF descriptor to capture motion infor-

mation of 3D local regions in the spatio-temporal video cuboid.

Unlike HOF and MHOF descriptor in literature that describe
the spatio-temporal cuboid as a whole, SL-HOF partitions the

cuboids spatially into numerous 3D local regions and captures

the spatial distribution information of those local regions’ mo-

tion in a straightforward way, which can implicitly embed the

structural information of foreground into the extracted features

and characterize the motion of different foreground objects

more precisely. 

• We propose a novel ULGP-OF descriptor to describe the motion

of local region texture in video foreground. In contrast to ex-

isting video descriptors that merely describe either motion or

appearance of video, ULGP-OF not only incorporates the local

texture information but also the motion characteristics of local

texture into the video representation, which enables ULGP-OF

features to encode the interaction between texture and motion

in video events. Therefore, ULGP-OF seamlessly combines tex-

ture and motion into the video representation. Meanwhile, a

new foreground localization scheme is proposed to facilitate a

more accurate localization of the video foreground texture for

subsequent ULGP-OF feature extraction. 

• We are the first to introduce the emerging OCELM into video

anomaly detection as the data description algorithm for nor-

malcy modeling. With a significant leap in learning speed,

OCELM can achieve comparable or better performance than ex-

isting data description algorithms like OCSVM in literature. Fur-

thermore, OCELM enables us to update model more easily and

learn more rapidly from fast-growing surveillance data without

loss of performance, which can be a promising solution to fu-

ture video analysis. 

The rest of papers are organized as follows: Section 2 re-

iews existing approaches of anomaly detection in crowded

cenes, as well as other works related to the proposed approach.

ection 3 presents the proposed video representation and analyzes
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Fig. 3. HOF feature extraction ( D = 4 ). 
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he underlying reasons why SL-HOF and ULGP-OF can obtain a

avorable video representation. Section 4 introduces the adopted

CELM for normalcy modeling. Section 5 reports the experimental

esults on commonly-used benchmark datasets of video anomaly

etection, including comparing the proposed video descriptors,

ata description algorithm as well as the detection and localiza-

ion performance with those of the literature. Section 6 concludes

his paper. 

. Related work 

In this section, we first introduce existing approaches in video

nomaly detection and localization in terms of two aspects: Video

epresentation and normalcy modeling. Then, relevant works on

he low-level LGP descriptor and the emerging ELM are reviewed. 

As to video representation, numerous low-level video descrip-

ors are proposed for robust video anomaly detection in crowded

cenes. One of the pioneering work of using low-level descrip-

ors is Mahadevan et al. [9] , who represent the appearance and

ynamics of video frame patches by Mixture of Dynamic Texture

MDT). Mahadevan et al. also establish the most widely used video

nomaly detection and localization datasets of crowded scenes,

CSD ped1 and ped2. Kratz et al. [10] apply spatio-temporal gra-

ient (3D gradient) to characterizing video events in extremely

rowded scenes, and Lu et al. [11] adopt this descriptor as well.

hang et al. [12] use spatio-temporal gradients as the appearance

ue of video event. In [13] , Roshtkhari et al. represent the densely

ampled spatio-temporal cuboids from videos by Histogram of Gra-

ient (HOG). Similarly, Zhao et al. [14] combine HOG and His-

ogram of Optical Flow (HOF) to provide information of action

nd appearance in videos. Cong et al. [15] propose a Multi-scale

OF (MHOF) descriptor with different feature bases to preserve

patio-temporal contextual information. Cheng et al. [16] apply 3D

OG, HOF, and 3D SIFT to represent spatio-temporal interest points

STIPs) in video volumes. 

When it comes to normalcy modeling, a variety of methods

re proposed in the literature. one category of prevailing normal

ata description approaches is sparse coding. For example, Cong

t al. [15] propose to select a limited number of normal training

eatures to form a dictionary by solving a l 2, 1 -norm optimization

roblem, so that each normal feature can be reconstructed lin-

arly by the dictionary with low reconstruction error. Zhu et al.

17] adopt a similar sparse coding based approach except that

he Euclidean distance in optimization objective is replaced by

arth Mover’s Distance (EMD). Zhao et al. [14] utilize the Laplacian

parse Representation (LSR) to encode spatio-temporal feature vec-

ors. To overcome the high computational cost in testing process,

u et al. [11] propose to learn a series of smaller “sparse com-

inations” rather than a dictionary in [15] , which enables a high

esting speed by avoiding solving l 1 -norm optimization problem.

espite that sparse coding can yield relatively good performance,

nducing sparsity by l 1 or l 2, 1 -norm optimization is usually time-

onsuming in both training and testing phase, and it often involves

uning parameters like Lipschitz Constant and reconstruction error

ound, which are not straightforward to tune. In addition to sparse

oding, other works also rely on OCSVM [18–20] or Support Vec-

or Data Description (SVDD) [12] to model normal video features.

CSVM and SVDD can be implemented at a satisfactory speed dur-

ng testing since they do not involve solving any difficult opti-

ization problems. However, they still suffer from slow learning

peed, especially when dealing with a large amount of video data.

ther representative approaches include: Adam et al. [21] place

everal monitor points uniformly on video frames and represent

ormal event by optical flow histogram statistics. Mehran et al.

22] propose a social force (SF) model for anomaly detection.

i et al. [23] propose a joint detector to produce spatial and
emporal saliency score based on hierarchical MDT (H-MDT), and

onditional Random Field (CRF) is used to guarantee consistency of

nomaly judgement. Chen et al. [16] detect video anomaly by hi-

rarchical feature representation and Gaussian Process Regression

GPR). 

In this paper, we propose ULGP-OF descriptor to characterize

he motion of local foreground texture, which is motivated by the

ow level descriptor LGP [8] . LGP is an improved version of the

lassic 2D texture descriptor Local Binary Pattern (LBP) [24] . LBP

nd LGP are popular in 2D static image texture description due to

heir sound properties such as invariance to monotonic gray-level

hange and robustness to local deformation. Another key compo-

ent of our approach is OCELM. Proposed by Huang et al. [25] ,

LM has become a hot research topic due to its ultra-fast learning

peed and favorable generalization performance when compared

ith classic learning algorithms like SVM. The efficacy of ELM has

een demonstrated by a variety of machine learning tasks, includ-

ng regression and multi-class classification [26] , semi-supervised

earning and clustering [27] , online sequential learning [28] . Re-

ently, deep architecture of ELM is also introduced into ELM for

eep feature learning [29,30] . For instance, Yang et al. [31] study

he general architecture of multilayer ELM (ML-ELM) with subnet-

ork nodes for efficient feature dimension reduction. Cao et al.

32] combine ELM and sparse representation classifier (SRC) to

nable a fast and accurate landmark recognition. ELM has also

een applied successfully to various practical applications, e.g., ob-

ect detection [33] , image quality assessment [34] , face recognition

35] , 3D graphics shape learning [36] , etc. OCELM is proposed by

eng et al. [37] , however, only small UCI datasets and synthetic

atasets are tested. We are the first to introduce OCELM into com-

uter vision, and we also show OCELM is able to yield state-of-the-

rt performance in video anomaly detection and localization tasks

n benchmark datasets when combined with the proposed video

epresentation. 

. Video representation 

In this section we show how to represent spatio-temporal video

uboids by SL-HOF and represent frame patches obtained by the

oreground localization scheme by ULGP-OF, to obtain a joint video

epresentation. Reasons of the proposed descriptors’ effectiveness

re also discussed. 

.1. Optical flow and HOF 

Before we present SL-HOF and ULGP-OF descriptor, we would

riefly review the concept of optical flow and the classic HOF de-

criptor. As a powerful tool to describe motion in videos, optical

ow [38,39] estimates the magnitude and direction of each indi-

idual pixel in video frames by two neighboring frames. Based on

ptical flow, HOF descriptor is proposed. To be more specific, the

alculation procedure of HOF is shown in Fig. 3 : Suppose an optical

ow vector v i is calculated for each pixel i in a video unit (a frame

atch or a spatio-temporal cuboid). The optical flow magnitude | v |
i 
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Fig. 4. SL-HOF feature extraction ( m = 3 , n = 4 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Different partition ways of spatio-temporal cuboids by 3D HOG (top) and 

SL-HOF (bottom). 
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is voted into D directions by the direction of optical flow to obtain

a D -bin histogram as a HOF feature. HOF is one of the most widely

used video descriptor that can robustly summarize the statistics of

motion magnitude and direction in videos. In video anomaly detec-

tion, spatio-temporal cuboids from video are usually described by

HOF to produce a video representation. However, the main draw-

back of such representation is that the spatial location information

of each pixel’s optical flow is entirely erased by calculating a his-

togram. 

3.2. SL-HOF descriptor 

We substitute the widely-used HOF descriptor by the proposed

SL-HOF descriptor to enable the descriptor to not only depict the

motion magnitude and direction, but also capture the spatial distri-

bution of optical flow in spatio-temporal cuboids. We obtain a SL-

HOF based video representation by the following steps (See Fig. 4 ):

Firstly, video frames from normal training volumes are split into

M × N non-overlapping patches with equal size, and d temporally

consecutive patches at the same spatial location of video frames

are stacked into a spatio-temporal cuboid. In our approach, we

adopt a short temporal window (a small d like d = 5 ) to avoid

the foreground changes drastically within the cuboid. A cuboid can

be viewed as a local “video event” that contains one or several

foreground objects. Secondly, the spatio-temporal cuboid is further

partitioned spatially into m × n non-overlapping 3D local regions

by different spatial ( x − y ) locations (Uniform partition is adopted

in our approach, but other partitions are also feasible). By the term

“spatially localized”, we mean that the cuboid is not further par-

titioned into smaller regions by temporal ( t ) location because it

dampens the motion statistics of local regions (please note ”spa-

tially localized” does not mean that SL-HOF only extracts feature

from spatial space like 2D texture descriptor do). This differentiates

SL-HOF from cell-based descriptors like 3D HOG [40] , which parti-

tions the cuboid not only by spatial location but also by temporal

location (See Fig. 5 ). Next, a sub-histogram of optical flow h i is

extracted from 3D local region i , which differentiates SL-HOF from

classic HOF that extracts histogram from the entire spatio-temporal

cuboid. Finally, all histograms h , h , . . . , h m ×n are concatenated to
1 2 
btain a SL-HOF feature f SLHOF = [ h 1 ; h 2 ; . . . ; h m ×n ] . m and n can be

djusted according to different foreground object scales. 

The operations of SL-HOF descriptor are pretty straightforward

nd understandable. However, our experiment in Section 5 will

how SL-HOF can work significantly better than other frequently-

sed video descriptors. The main advantage of SL-HOF over HOF

s that SL-HOF aims to characterize the motion of 3D local re-

ions rather than the entire spatio-temporal cuboid. This scheme

an benefit video representation in two aspects: 

First of all, it preserves the spatial distribution information of

ptical flows in the spatio-temporal cuboid by calculating a sub-

istogram for each spatial location, which actually preserves pixels’

patial location information erased by histogramization to a cer-

ain extent, and such information is able to reflect the structural

nformation of foreground objects. We illustrate this point by a ex-

mple of a walking pedestrian (normal event) and a man in the

heelchair (abnormal event) moving at a close speed to the same

irection. As can be seen in Fig. 6 , HOF descriptor can be easily
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Fig. 6. Foreground structural information embedded in SL-HOF features. 

Fig. 7. Foreground motion description using SL-HOF features. 
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ooled since two objects share close speed and moving direction.

y contrast, SL-HOF is able to get very different representation for

wo objects due to their different structures: Strong optical flow

istograms (“strong” means bins of the histogram has large vote 

alues) can be observed in region 2, 6 and 10 for the walking man,

hile region 3, 6, 7, 8, 10, 11 and 12 obtain strong histograms for

an in the wheelchair, thus leading to quite different SL-HOF f ea-

ures. Such information clearly contributes to discriminating abnor-

al foreground objects with abnormal structures, but no existing

ork explores this to our knowledge. 

Secondly, SL-HOF can characterize the motion of foreground ob-

ect more accurately, which is explained by Fig. 7 : A walking man

normal event) and a skater (abnormal event) both moving towards

ight. Like the example above, their difference of HOF representa-

ion is minor when their speed is close. However, we can discover

heir difference easily by SL-HOF representation: The skater on the

kateboard are moving as a whole. Therefore, region 2, 3, 6, 7, 10

nd 11 can all observe a strong optical flow histogram. However,

he local motion of a walking man’s body parts is not consistent

ike a skater since human’s two legs advance alternatively while

alking. In the example of Fig. 7 , the man’s supporting leg in re-

ion 7 and 11 remain static while the other leg in region 6 and
0 steps forward rapidly, which leads to weaker histograms in re-

ion 6 and 10. Thus, the yielded SL-HOF features of walking man

nd skater evidently differ from each other. Consequently, SL-HOF

an yield more discriminative video representation than HOF, and a

uantitive comparison between SL-HOF and other descriptors will

e given in Section 5 . 

.3. Foreground localization 

By representing spatio-temporal video cuboids with SL-HOF de-

criptor, we can efficiently capture the local motion statistics in

D local regions, including motion magnitude, direction and spa-

ial distribution. In addition to motion statistics of local regions,

e also attempt to incorporate texture (appearance) information

f video foreground into our video representation. Instead of de-

cribing texture of video frames directly as [9] and [12] do, we

haracterize the motion of texture in video foreground, because

nly texture of active foreground contributes to anomaly detec-

ion. However, one problem is that partitioning videos into spatio-

emporal cuboids is unable to locate foreground objects accurately

ith many foreground objects being “torn apart” by the parti-

ion. To alleviate this problem for ULGP-OF based texture motion

escription, we therefore propose a new foreground localization

cheme to extract patches of foreground. 

The procedure of the proposed foreground localization scheme

s shown in Fig. 8 : Firstly, since the surveillance videos are usu-

lly shot by static cameras, Robust Principle Component Analysis

RPCA) [41] can model the scene background B by considering it

s a low-rank matrix recovery problem in Eq. (1) : 

in 

A , E 
= || A || ∗ + λ|| E || 1 s.t. D = A + E (1)

Where D = [ d 1 , d 2 , . . . , d N ] , and d i is obtained by squeezing the

 th video frame into a column vector. | · | ∗ is the nucleus norm. N

enotes the number of training video frames. A = [ a 1 , a 2 , . . . , a N ]

s supposed to be a low-rank matrix formed by a i , which is the

olumn vector squeezed from the background of i th training video

rame. E = [ e 1 , e 2 , . . . , e N ] is the sparse matrix formed by the fore-

round of each video frame. Having obtained A from Eq. (1) , the

rocedure of foreground localization is shown in Fig. 8 : First, we

btain the background image by averaging the background of each

rame: B = reshape ( 1 N 

∑ N 
i =1 a i ) , where the function reshape ( · ) re-

hapes the vector into a matrix with the same size as the orig-

nal video frame. Then we subtract B from an input video frame

 to extract the foreground F = | I − B | , where | · | denotes getting

lement-wise absolute value of the matrix. With foreground F ,

ach pixel’s probability of being foreground is estimated by a sig-

oid transformation p i, j = 2 /exp(−λ · F 2 
i, j 

) − 1 . The sigmoid trans-

ormation can map F i, j , the absolute value of difference between

ackground B and a frame I at pixel ( i, j ), into [0,1] to facili-

ate the later binarization. In our experiments, we simply estimate

= 1 / 
√ 

N f rame , where N frame is the number of pixels on a video

rame. The third step is to obtain a binarization map F ′ of fore-

round using the estimated probability p i, j by binarizing pixels

ith p i, j > 0.5 into 1, while others into 0. Finally, Algorithm 1 is

sed to generate a series of bounding boxes with equal size to lo-

ate the foreground objects and cover the majority of foreground

ixels. Four input parameters are needed for Algorithm 1 : Binariza-

ion map F ′ , bounding box height H and width W , minimum num-

er of foreground pixels T fore that should be covered by bounding

oxes and minimum number of remaining foreground pixels that

hould be covered by a new bounding box T gain , while the output

s the centers of bounding boxes C box . T fore is used to ensure that

ost foreground pixels are covered. T gain is set to avoid generating

edundant boxes that overlap too much with previous bounding

oxes. If the number of remaining foreground pixels covered by a
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Fig. 8. Foreground localization. 

Algorithm 1 Foreground Localization. 

Input: 

F ′ , H, W , T f ore , T gain 

Output: 

C box 

1: Initialize current number of covered foreground pixels N cov er = 

0 , bounding boxes center C box = ∅ , candidate centers C candi are 

initialized to be all foreground pixels. 

2: Sort C candi by the number of foreground pixels that can be cov- 

ered by the bounding box centered at one candidate center in 

descending order. 

3: while N cov er < T f ore do 

4: Select the first center C cur from C candi , calculate the number 

of remaining foreground pixels in F ′ covered by the bounding 

box at C cur , N cur . 

5: if N cur > T gain then do 

6: N cov er = N cov er + N cur , 

7: C box = C box 

⋃ 

C cur , 

8: For F ′ i, j covered by current bounding box, set F ′ i, j = 0 . 

9: end if 

10: Remove C cur from C candi . 

11: end while 
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new bounding box is less than T gain , this box will not be added to

C box , because it does not bring enough “gain” to covering the fore-

ground pixels and is considered redundant. Candidate centers are

sorted by number of covered foreground pixels in descending or-

der to encourage generating boxes at the approximated center of

foreground objects. Suppose the total number of foreground pixels

are N fore and the total number of pixels in a bounding box is N box ,
e simply use T f ore = 0 . 975 · N f ore and T gain = 0 . 05 · N box . As shown

n Fig. 8 , the proposed scheme can locate video foreground fast and

ccurately in a simple way, and each video patch inside a bounding

ox is then represented by ULGP-OF descriptor. 

.4. ULGP-OF descriptor 

Having located the video foreground, we propose to represent

he foreground texture (appearance) inside each bounding box by

LGP-OF descriptor. The proposed ULGP-OF is based on 2D tex-

ure descriptor Uniform LGP (ULGP), which will be reviewed in the

rst place. A LGP code can be calculated by the procedure shown

n Fig. 9 : For a 3 × 3 pixel local image area, the intensity of cen-

er pixel and its 8 surrounding sampling points are denoted by

 c and x i , i = 1 , 2 , . . . , 8 , respectively. The local gradient at each

ampling points x i is approximated by g i = | x i − x c | , and a bina-

ization threshold T is calculated by averaging 8 local gradients:

 = 

1 
8 

∑ 8 
i =1 g i , where g i is the local gradients of the i th neighbor

oint, i = 1 , 2 , . . . , 8 . Then g i is binarized into 0 and 1 by T to ob-

ain an 8-bit binary code ranging from 0 to 255, which encodes

ocal texture pattern in this local image area. A LGP feature vector

s obtained by calculating a 256-bin histogram of all LGP codes in

n image. Each LGP code (or bin index) represents one type of lo-

al region texture. However, not each LGP pattern from 0 to 255

s informative for texture description, and different LGP codes do

ot emerge at a equal probability, thus often leading to a high-

imension sparse feature vector. Hence, Topi et al. [42] proposed

he concept of “uniform pattern”. “Uniform pattern” is based on

he discovery that the majority of information is carried by edges

n real-world images, and the LGP codes of object edges are highly

ikely to be “uniform”, which means at most two 0–1 or 1–0 jumps

hould be observed in one circular LGP binary code. For instance,
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Fig. 9. The encoding process of LGP. 

Fig. 10. The encoding process of ULGP-OF (LGP = 240). 
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 0 01110 0 and 0 0 0 0 0 0 0 0 are uniform codes while 01010011 is not.

he constraint of uniformity excludes most uninformative codes,

nd it also reduces the dimension of a LGP feature vector from 256

o 58. 

On the ground of ULGP, the core idea of ULGP-OF is to de-

cribe the motion of local texture, which is represented by dif-

erent ULGP codes. We take ULGP code 11110 0 0 0 (240) as an ex-

mple to illustrate the calculation of ULGP-OF (See Fig. 10 ): For

ach pixel in a video frame, a LGP code is calculated to repre-

ent its local image texture. The optical flow at this pixel is con-

idered as the motion of this local texture. Subsequently, if the

GP code is uniform, optical flows of all pixels with this LGP code

re collected to calculate a D -bin optical flow sub-histogram in the

ame way of HOF (In Fig. 10 , LGP = 240, D = 4 , the corresponding

ub-histogram is Hist 240 ), which summarizes the motion statistics

f the local texture represented by this LGP code. By concatenat-

ng sub-histograms of all ULGP codes, we obtain a 4 × 58 = 232 -

imension ULGP-OF feature in Fig. 10 . In essence, ULGP-OF replaces

he original vote weight, the number of ULGP code, by optical flow

agnitude. It is interesting to note that ULGP-OF can implicitly

lter out the texture of background: since the video background

s static, the optical flow magnitude of background pixel is 0 (or

ery close to 0), so the voting weight of the background pixel is

. Adding a 0 weight will not change the calculated ULGP-OF fea-

ure. In other words, only foreground pixels with motion can have

 significant influence on calculating the histogram of ULGP-OF,

nd what we care in the video is exactly the active foreground

ather than the static background. Besides, ULGP-OF inherits the

ound properties of LGP and HOF by seamlessly combining the

wo descriptors: For one thing, ULGP-OF can indicate the compo-

ition of video foreground texture like LGP, because the magnitude

f each sub-histogram reflects the amount of each texture com-

onent in video foreground. For another, a ULGP-OF feature also

ontains motion and direction information like HOF. By ULGP-OF,

e incorporate both local foreground texture and its motion into

ur video representation. A quantitive experiment is also given in

ection 5 to demonstrate its efficacy. 

. Normalcy modeling 

In this Section, we present the adopted one-class data de-

cription algorithm OCELM for normalcy modeling. We model the
xtracted SL-HOF and ULGP-OF features from normal video events

y OCELM, which is a simple variant of the emerging ELM. The

sage of ELM is motivated by the characteristics of video data. As

 stream of 2D images, the data size of video can be far greater

han 2D static images. For example, a five-minute 160 × 240 video

an generate 7200 images and more than 10 6 patches or spatio-

emporal cuboids for processing with a local patch size 10 × 10,

hich makes the training time required by traditional methods like

parse dictionary learning and OCSVM hardly bearable. Meanwhile,

ideo data are generated rapidly at a real-time speed. Since all nor-

al video events cannot be enumerated at one time and newly-

ncoming normal events are supposed to be included every now

nd then, the normal event models should be easy for re-training

nd updating, which can be pretty hard for OCSVM or sparse dic-

ionary learning. As a result, ELM, which can achieve comparable

r higher data description performance with much less training

ime required, becomes a promising solution to video anomaly de-

ection. In addition, we would like to clarify why OCELM rather

han the original basic ELM is adopted here: In video anomaly

etection, usually there are only data of normal video events for

raining, because abnormal events are unpredictable and rarely

een when compared to normal events, which makes collecting

raining data of abnormal events particularly difficult. Besides, ab-

ormal events are almost impossible to be completely enumerated

or building a complete classification model. Therefore, due to the

bsence of training data of abnormal events, we formulate this

roblem as an one-class learning/outlier detection problem rather

han a classic classification problem. We will review basic ELM first

efore we present OCELM. 

Basic ELM is a three-layer feedforward neural network. The

ssence of ELM is to randomly generate the weights between the

nput layer and hidden layer, which are not tuned in subsequent

raining, and the weights between hidden layer and output layer

re determined analytically by solving a least square optimization

roblem rather than classic error back-propagation. In other words,

LM’s fast learning speed can be ascribed to not involving itera-

ive weight tuning, and Huang et al. [25] prove the universal ap-

roximation capability of ELM. To be more specific, with the input

raining set X n × d and L hidden nodes ( n and d are the number

f training features and the number of feature dimension), the in-

ut features are randomly mapped to a new feature space as the

utput of hidden layer H n × L . Then the output weights β between

idden layer and output layer are determined by Moore–Penrose
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Fig. 11. Network structure of OCELM. 
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persudo inverse: 

β = H 

T 

(
I 

C 
+ H H 

T 

)−1 

T (2)

where C , T and I denote the regularization coefficient, target output

and identity matrix, respectively. With the obtained neural net-

work, the prediction of a new sample x is given by 

f ( x ) = h ( x ) β = h ( x ) H 

T 

(
I 

C 
+ H H 

T 

)−1 

T (3)

where h ( x ) is the random mapping of x . If the random mapping is

unknown, the prediction of x can be determined by using kernel

tricks 

f ( x ) = K 

T 
test 

(
I 

C 
+ K 

T 
train 

)−1 

T (4)

where K train and K test are kernel matrices. Modifying an ELM into

OCELM is straightforward: Since all training samples in one-class

learning problems have the same label value y , the target output

T is given by T = 1 · y, which corresponds to a single output node

(See Fig. 11 ). Assuming the actual outputs of OCELM for training

samples are y i , i = 1 , 2 , . . . , n, the mapping error of training sam-

ple x i to the target value y is d i = | y i − y | . A threshold d T is chosen

to exclude a small fraction ( p ) of farthest training points ( d i > d T ),

which can prevent the outliers in training set from degrading data

description performance of OCELM. In practice, y is set to be 1

and p usually takes small value like 0.05 or 0.01. According to [37] ,

we adopt Gaussian kernel based OCELM in our approach to obtain

the best data description performance. As shown above, the train-

ing and testing of OCELM do not involve any iterative optimization

procedure, resulting in a much faster learning speed. 

5. Experiments 

In this section, we report the experimental results regarding

the proposed approach. First of all, we present the experimental

setup and commonly-used evaluation criteria for video anomaly

detection and localization in Section 5.1 . Secondly, we demonstrate

the effectiveness of the proposed descriptors, data description al-

gorithm and joint video representation in Sections 5.2, 5.3 and

5.4 , respectively. In Section 5.5 , the proposed approach is tested

on three publicly available datasets and its performance is com-

pared with other state-of-the-art approaches in literature. Finally,

the computational efficiency of the proposed approach is discussed

in Section 5.6 . 
.1. Experimental setup and evaluation criteria 

The experiments are carried out on three datasets: UCSD ped1,

CSD ped2 and UMN datasets. UCSD ped1 and ped2 pedes-

rian datasets [9] are the most frequently-used datasets in video

nomaly detection and localization. UCSD ped1 dataset contains

4 training video volumes and 36 testing video volumes, each vol-

me consists of 200 frames with a resolution of 158 × 238. UCSD

ed2 dataset contains 16 training volumes and 12 testing video

olumes with 240 × 360 video frames, and the number of video

rames in each volume varies from 120 to 180. Both UCSD ped1

nd ped2 datasets contain challenging crowded and uncrowded

cenes with different sorts of anomalies on campus pavement,

uch as skaters, bikers and vehicles. UMN dataset [22] is another

idely-used dataset that contains normal crowd activities (walk-

ng) and abnormal crowd activities (escaping) in different scenes,

nd it has 7740 240 × 320 frames in total (1450, 4415 and 2145

rames for scene 1–3 respectively). The first 400 frames in each

cene are used for training and the rest are left for testing. 

For detection and localization on UCSD ped1 and UCSD ped2

ataset, we partition the video volumes into 10 × 10 × 5 spatio-

emporal cuboids, and the cuboids with only minimal temporal

radient accumulation value are filtered out. The rest of cuboids

re represented by SL-HOF with m = 7 , n = 8 to yield the best per-

ormance, while we set the bins of optical flow direction D = 4 .

patio-temporal base in [15] is used to organize SL-HOF features

nd PCA is performed to reduce the SL-HOF feature dimension

o 950. To detect anomalies with different sizes, SL-HOF features

re extracted on multiple scales: 120 × 180, 100 × 150 and 80 × 100

or UCSD ped1 dataset and 180 × 270, 120 × 180 and 100 × 150 for

CSD ped2 dataset. Only SL-HOF features extracted from the same

patial location of video frames with the same scale are used to

rain and test. Foreground localization is performed on the original

cale of video frames with 21 × 12 and 34 × 17 bounding box for

CSD ped1 and ped2, respectively, and the video frames are di-

ided uniformly into 7 × 11 spatial regions. Likewise, only ULGP-OF

eatures extracted from those bounding boxes, whose centers lies

n the same local spatial region, are used to train and test. Anoma-

ies detected by SL-HOF and ULGP-OF are combined as the final

etection result. For UMN dataset, the detection is performed on

ne scale 80 × 100 since the foreground objects share a close size.

he size of spatio-temporal cuboid is 20 × 20 × 5 and m = 2 , n = 3

or SL-HOF feature extraction, while spatial base [15] is adopted.

he bounding box is set to be 40 × 20 for foreground localization

n the original scale. To parameterize OCSVM and OCELM in the

xperiments, we select the regularization coefficient ν and C from

2 −20 , 2 −11 , . . . , 2 0 ] and [2 −10 , 2 −11 , . . . , 2 11 , 2 10 ] , respectively. Gaus-

ian kernel width σ is selected from [2 −10 , 2 −11 , . . . , 2 11 , 2 10 ] . Pa-

ameters are determined by 10-fold cross-validation. The rejected

atio is set to be p = 0 . 01 for OCELM. 

As for evaluation criteria, we adopt frame-level criteria for

nomaly detection and pixel-level criteria for anomaly localization

23] : Frame-level criteria. A video frame that contains any detected

bnormal pixel is considered as an abnormal frame. The abnormal

rames detected by a method is compared with the ground truth

rames on a per-frame basis. Pixel-level criteria. The pixel-level cri-

eria are more precise and challenging than the frame-level one.

nly when 40% pixels of the ground truth abnormal event are de-

ected by the method, a frame can be viewed as a successfully de-

ected abnormal frame. That is to say, the method is required to

ot only determine the frame index of abnormal events, but also

ocalize the abnormal events roughly. In fact, anomaly localization

an be viewed as a “refined” anomaly detection process. For frame-

evel and pixel-level evaluation, Equal Error Rate (EER), ROC Curves

nd Area Under the Curve (AUC) are calculated for a quantitive

omparison. All experiments are carried out under MATLAB 2015b
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Fig. 12. Descriptor comparison. 

Table 1 

Comparison of video descriptors. 

Descriptor EER (%) AUC (%) 

MHOF 29 76.45 

3D HOG 31 73.98 

HOF 32 75.56 

HOG + HOF 29 76.28 

3D Gradient 33 70.87 

ULGP-OF 23 82.29 

SL-HOF 21 85.73 
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Fig. 13. Comparsion of OCSVM and OCELM. 
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nvironment on a PC with 32 GB RAM and 3.90 GHz Intel i7 4790

rocessor. 

.2. Descriptor comparison 

In this section, we design an experiment to compare the pro-

osed SL-HOF and ULGP-OF descriptor with the following clas-

ic video descriptors: 3D Gradient [10] , HOF, MHOF [15] , 3D HOG

43] , HOG+HOF [14] . Spatio-temporal cuboids are extracted from

he training video volumes of UCSD ped1 dataset on a single scale

100 × 150) and represented by the above descriptors respectively.

he extracted features are all modeled by the same Gaussian ker-

el based OCSVM for subsequent anomaly detection. ROC Curves,

ERs and AUCs yielded by different descriptors under frame-level

riteria clearly show the improvement of discriminative power by

he proposed descriptors (See Fig. 12 and Table 1 ): 

As can be seen from Fig. 12 and Table 1 , both SL-HOF and

LGP-OF significantly outperform other descriptors in the experi-

ent by a 6% to 12% EER improvement and a 6% to 15% AUC im-

rovement. The results justify the proposed descriptors for video

epresentation in video anomaly detection. Besides, it should also

e noted that SL-HOF and ULGP-OF perform much better than two

xisting optical flow based descriptors, MHOF and HOF, which de-

cribe motion from the entire spatio-temporal cuboid rather than

ocal motion. It verifies our claim that local motion based descrip-

ors can lead to a more effective video representation for anomaly

etection. 

.3. Data description algorithm comparison 

In this section, we follow the experimental setup in

ection 5.1 and use classic OCSVM [44] and the adopted OCELM
s the data description algorithm respectively to compare their

erformance on UCSD ped1 and UCSD ped2 dataset under the

ore precise pixel-level evaluation criteria. The results are dis-

layed in Fig. 13 and Table 2 . To show the learning speed, the

verage training time required to train one OCELM or OCSVM

ith the SL-HOF features extracted from one spatial location of

ideo frames is also listed in Table 2 . We also show the learning

ime needed by Sparse Reconstruction Cost (SRC) [15] , which is a

epresentative sparse coding based method used in video anomaly

etection, as a reference (The performance of SRC is omitted since

he optimal parameterization of SRC cannot be determined by

rossvalidation like OCELM and OCSVM, and we will report the

erformance of SRC in Section 5.5 directly from [15] ). 

As can be seen from Fig. 13 and Table 2 , the adopted OCELM

an achieve comparable or superior EERs and AUCs to the classic

CSVM with a 50 times faster learning speed. Actually, the advan-

age of OCELM should be even larger since OCSVM takes a faster C

mplementation while OCELM is implemented by Matlab. We also

ote that the learning speed of sparse coding based SRC is much

lower than both OCSVM and OCELM, even though we only im-

lement the optimization by merely 50 iterations, which is not

nough for the objective to converge in most cases. Besides, there
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Table 2 

Comparison of data description algorithms. 

Algorithm EER (ped1) (%) AUC (%) EER (ped2) (%) AUC (%) Training time (s) 

OCSVM 35 64.79 19 81.27 4.0 0 08 

OCELM 33 68.88 17 80.12 0.7915 

SRC – – – – 25.7508 

Table 3 

Anomaly localization performance by SL-HOF, ULGP-OF and joint video represen- 

tation. 

Video Descriptor EER (ped1) (%) AUC (%) EER (ped2) (%) AUC (%) 

SL-HOF 36 65.67 19 77.77 

ULGP-OF 43 60.81 26 70.47 

Joint 33 68.88 17 80.12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Joint video representation. 

Table 4 

Method comparison on UCSD ped1 dataset. 

Method EER (frame) (%) AUC (%) EER (pixel) (%) AUC (%) 

Proposed 18 88.5 33 68.9 

GPR 24 83.8 37 63.3 

MDT 25 81.8 56 44.1 

HMDT + CRF 18 – 35 66.2 

STC 21 87.2 37 –

MAC – 85 – 65 

SRC 19 86 54 46 

SCL 15 92 41 63.8 

Dense STC 16 89 58 41.7 

SF 31 67.5 79 19.7 

SF + MPPCA 32 67 71 21.3 

Adam et al. 38 65 76 13.3 
are more parameters for SRC to tune (e.g., Lipschitz constant, re-

construction error bound). They are not straightforward to tune

and cannot be determined conveniently by cross-validation like

OCSVM and OCELM. Consequently, we adopt OCELM as our data

description algorithm to model video normal events. 

5.4. Joint video representation 

In this section, we show that the proposed joint video rep-

resentation can yield better localization performance than sin-

gle descriptor based video representation. We represent the train-

ing video volumes by SL-HOF and ULGP-OF alone, and compare

their anomaly localization performance with the proposed joint

video representation under the pixel-level criteria. The compari-

son is made on UCSD ped1 and UCSD ped2 dataset. The results

are shown in Fig. 14 and Table 3 : Compared to single descriptor

based video representation, the proposed joint video representa-

tion enhances the performance on both datasets. There are two

reasons for the improvement: Firstly, the joint video representa-

tion combines the 3D local region motion information carried by

SL-HOF and local texture motion information carried by ULGP-OF.

Secondly, the proposed foreground localization scheme enables the

proposed method to localize the abnormal video foreground more

accurately than single spatio-temporal cuboid based video repre-

sentation. 

5.5. Method comparison 

5.5.1. UCSD ped1 and ped2 datasets 

In this section, we test the proposed anomaly detection and lo-

calization approach on UCSD ped1 and UCSD ped2 datasets. For

UCSD ped1 dataset, the following state-of-the-art methods in lit-

erature are used for comparison: Sparse Reconstruction Cost (SRC)

[15] , Sparse Combination Learning (SCL) [11] , Motion and appear-

ance cues (MAC) [12] , Gaussian Process Regression (GPR) [16] ,

HMDT+CRF [23] , Spatio-temporal Context (STC) [45] , MDT [9] , So-

cial Force (SF) [22] , Social Force+MPPCA (SF+MPPCA), Adam et al.

[21] , Dense STC [13] . The detection and localization ROC curves are

plotted in Figs. 15–18 , and the EERs and AUCs under the frame-

level evaluation and pixel-level evaluation are listed in Table 4 ,

Table 5 (“-” means the result is not given in the literature). As

it is seen from Table 5 , the proposed approach achieves compara-

ble anomaly detection performance to state-of-the-art results un-

der frame-level evaluation criteria (EER 18% and AUC 88.5%), while

it yields the best EER (33%) and AUC (68.9%) under the more pre-

cise pixel-level evaluation ( Fig. 16 ). 

For UCSD ped2 dataset, the following approaches are com-

pared with our approach: Motion and appearance cues (MAC)
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Fig. 15. Frame-level anomaly detection on UCSD ped1 dataset. 

Fig. 16. Pixel-level anomaly localization on UCSD ped1 dataset. 

Fig. 17. Frame-level anomaly detection on UCSD ped2 dataset. 

Fig. 18. Pixel-level anomaly localization on UCSD ped2 dataset. 

Fig. 19. ROC curves of different methods on UMN datasets. 

Table 5 

Method comparison on UCSD ped2 dataset. 

Method EER (frame) (%) AUC (%) EER (pixel) (%) AUC (%) 

Proposed 12 91.3 17 80.1 

SC 13 92 26 –

STC 21 89.1 – 67.4 

MAC – 90 – 73.7 

MDT 25 85 – –

HMDT + CRF 19 – 30 –

MPPCA 30 77 – –

Bertini et al. 30% – 68 –

SF + MPPCA 36 71 – –

Adam et al. 42 63 – –

[  

t  

a  

W  

b  

f  

A  

w  
12] , HMDT+CRF [23] , Spatio-temporal Context (STC) [45] , Spatio-

emporal Composition (SC) [46] , MDT [9] , MPPCA [47] , Social Force

nd MPPCA (SF+MPPCA), Bertini et al. [48] and Adam et al. [21] .

hile the AUC of [46] under frame-level evaluation is slightly

etter, the proposed approach achieves the best EER under both

rame-level (12%) and pixel-level criteria (17%) as well as the best

UC under pixel-level criteria (80.1%) among all of the methods,

hile the AUC under frame-level evaluation (91.3%) is the second
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Fig. 20. Different anomalies detected on UCSD ped1 dataset. 
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best. As a consequence, the proposed approach reports satisfactory

results for anomaly detection and localization tasks on both UCSD

ped1 and UCSD ped2 datasets, especially in anomaly localization

task. 

Examples of detected anomalies on UCSD ped1 and UCSD ped2

datasets are presented in Figs. 20 and 21 , and it can be easily dis-

covered that our approach can detect and localize multiple differ-

ent anomalies in both crowded and uncrowded scenes. We also

spot one interesting result in the last image of Fig. 21 : Despite that

the man with a bike is walking at a normal speed rather than rid-

ing fast, our approach still detects the bike as an anomaly since

R  
he structure and texture of a bike is different from that of the

oreground in training videos (pedestrians), which actually reflects

he proposed video descriptors’ capability in incorporating struc-

ural and texture information into our video representation. 

.5.2. UMN dataset 

We additionally test the proposed approach on UMN dataset,

hich is another widely used benchmark dataset for video

nomaly detection. Since no pixel-level ground truth is provided

ike UCSD ped1 and ped2 dataset, we evaluate the performance of

ur approach only by the frame-level criteria. The EER, AUC and

OC yielded by the proposed approach are compared with follow-
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Fig. 21. Different anomalies detected on UCSD ped2 dataset. 
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ng state-of-the-art approaches: SRC [15] , HMDT+CRF [23] , Chaotic

nvariants [49] , Local Statistics Aggregates (LSA) [50] , SF [22] . The

esults are summarized in Fig. 19 and Table 6 . As shown in Table 6 ,

ince the abnormal events in UMN are staged and the type of its

nomalies is much less than UCSD ped1 and ped2, the detection

erformance on UMN dataset is generally better than UCSD ped1

nd ped2 datasets. Our approach achieved fairly comparable EER

3.1%) and AUC (99.0%) among the compared approaches. Examples

f normal events and the detected abnormal events are shown in

ig. 22 . 
c  

v  
.6. Computational efficiency 

We implement our algorithm under Matlab 2015b environment

n a PC with 32 GB RAM and 3.90 GHz Intel i7 4790 processor.

t takes 1186.2 s, 455.5 s and 392.6 s, respectively to train nor-

al event models for UCSD ped1, ped2 and UMN dataset. As for

esting, the average processing time is 0.84 s/frame for UCSD ped1

ataset, 1.66 s/frame for UCSD ped2 dataset and 0.91 s/frame for

MN dataset. To further accelerate the training and testing of the

roposed approach, we can exploit the potential of parallel pro-

essing in terms of three aspects: First of all, the SL-HOF based

ideo representation and ULGP-OF based video representation are



174 S. Wang et al. / Neurocomputing 277 (2018) 161–175 

Table 6 

Detection results on UMN dataset. 

Method EER (%) AUC (%) 

Proposed 3.1 99.0 

Chaotic invariants 5.3 99.4 

HMDT + CRF 3.7 99.5% 

SRC 2.8 99.6 

SF 12.6 94.9 

LSA 3.4 99.5 

Nearest neighbor – 93 

Fig. 22. Normal events and detected abnormal events on UMN dataset. 
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independent, so they can be computed in parallel with each other

instead of being computed sequentially. Secondly, multi-scale anal-

ysis is another major computational burden. The computation con-

ducted on different video frame scales can be implemented in a

parallel way. Thirdly, since only features that are extracted from

the same spatial location on the video frame are used for train-

ing and testing, the training and testing of OCELM at different spa-

tial locations can be paralleled rather than the time-consuming se-

quential processing in current implementation. Last but not least,

a faster implementation like C ++ will also boost the training and

testing speed. 

6. Conclusion 

In this paper, we have proposed a novel video anomaly detec-

tion and localization approach by local motion based joint video

representation and OCELM. We represent the motion of 3D local

regions in spatio-temporal video cuboids by SL-HOF, which can

implicitly capture the structural information of foreground object

and depict foreground motion in a more accurate way. Combined

with the new foreground localization scheme, the proposed ULGP-

OF descriptor is used to characterize the motion of local texture

within the video foreground. SL-HOF and ULGP-OF features ex-

tracted from training video volumes are modeled by OCELM, which

enables us to learn a good data description in a much faster way

than other data description algorithms like OCSVM and sparse

coding. Experiments on public datasets show our approach can

achieve state-of-the-art results on both anomaly detection and lo-

calization task. In our future work, we will explore applying hier-

archical ELM-autoencoder to video analysis for a high speed auto-

matic video representation learning. Ensemble OCELM will also be

studied to describe data with several subclasses or clusters, which

may further enhance OCELM’s performance in data description. 
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